

 < back to doc

Xlinks guide

What is an Xlink

 Projects often need to reuse existing components that have been developed and are actively used as part of other projects. Plastic SCM encourages using separate repositories for different projects, and components and access shared components by "mounting" them in the project repository through Xlinks. This section will introduce Xlinks and how to use this powerful feature to share components among projects that evolve in parallel.

 An Xlink is pretty similar to a symbolic link, like those found in Unix operating systems. It is a directory entry in your repository tree that points to another directory in a different repository. An Xlink, however, will also contain information about the specific version of the target directory to which it is pointing.

[image: Sample Xlink]

 Xlinks can point to repositories with other Xlinks inside them, so Xlink component mounting can address really complex development scenarios.

[image: Several Xlinked repositories]

 Xlinks pointing to a given version of the target directory let the user specify, for instance, that project X on version 1.1 is using version 2.1 of library Y. When a new version of the library is labeled, say 2.2, the code of the project can be updated to use it and maybe version 1.2 of project X uses library Y 2.2.

 Since Xlinks are versioned, the Xlink in old project X version 1.1 still points to library Y 2.1 and the original configuration can be completely rebuilt without any issue. The following figure depicts how it looks like:

[image: Xlink evolution]

Creating and Modifying Xlinks

 An Xlink is defined with the following arguments:

 	
 The directory entry to create in the current repository. This is a directory that will be used.

	
 The target repository.

	
 The directory to mount in the target repository. You can Xlink to the root of another
 repository and any directory path inside by mounting a "subtree" on the parent repo as
 partial Xlinks.

 Partial Xlinks are available on Read-only Xlinks (see below).
 "Writable partial Xlinks" are not supported yet because they would overly complicate the merge (what if you
 have conflicts on parts you are not mounting?).

 Note: At this point, you need to use the
 command line to create partial Xlinks. GUI support will
 come soon.

 Important: Do not use partial read-only Xlinks with Gluon workspaces.
 Plastic Gluon doesn't handle partial read-only Xlinks. If you use
 this feature with Gluon workspaces, you'll get an inconsistent workspace.

	
 The version of the directory to mount. This is specified using either a changeset specification
 or a label specification.

 These are some examples of Xlinks definitions:

 [image: Xlink definition syntax sample]

 You can create two different types of Xlinks, depending on what you want to do with the target repository:

 	
 Read-only Xlinks - Recommended for situations where you are the user of an existing
 component, but you don't influence its development. In the example above, the user Xlinks an existing
 library only calling it from their project but not making any changes to it.

	
 Writable Xlinks - Lets you make changes inside the Xlinked repository.

 In the Workspace Explorer of the GUI client, you'll notice that the Type column contains
 wXlink where it used to be Xlink for read-only Xlinks.

 [image: Read-only vs. writable-Xlinks in the Workspace Explorer]

Creating an Xlink using the command line

 The command used to create the Xlink in the example referred to in section
 What is an
 Xlink
 looks like this:

cm xlink component1 / 1@mylibrary

 In the example above:

 	
 component1 is the directory in the project repository that will point to the mounted
 mylibrary component. This directory must not exist already in the repository. The xlink
 command will create an item for it, and it will throw an error if a file of the directory already existed with the
 same name.

	/ is the directory in the target repository, as described above.
	1 is the changeset number in the target repository.
	
 mylibrary is the target repository. Together with the changeset it forms a changeset
 specification. In this case, there is no server specified. If the server is to be specified, the
 spec will look like this: 1@mylibrary@servername:8087

 It is also possible to specify a label instead of a changeset. Since a label is actually a pointer to a changeset,
 the two specifications are interchangeable. To do so, keep in mind that specifying an xlink with a label only uses
 the label to retrieve the changeset to which it points and sets the xlink to it. This means that if the label is
 moved afterward, the Xlink will still point to the original changeset.

 To create a partial Xlink (read-only):

cm xlink component1Src /src/dll cs:478@mylibrary

 where /src/dll is the subdirectory where the partial Xlink will be mounted.

 You can create a Writable Xlink in the command line specifying the -w modifier:

cm xlink -w component1 / 1@mylibrary

 To get further information about creating an Xlink in the Command Line, refer to the command line interface
 and use the cm help xlink command.

Creating an Xlink using the GUI

 Xlinks can also be created from the GUI client that Plastic SCM
 provides. You'll note the new option in the Workspace Explorer context menu:

 Important: Partial Xlinks must be created only from the command line.

 [image: Creating an Xlink in the GUI Client]

 You can create an Xlink by right-clicking any directory or existing Xlink and selecting the
 Create Xlink option. It will create a new Xlink inside the selected directory.
 This is what the new dialog looks like:

 [image: Create Xlink Dialog Box in the GUI Client]

 In this dialog, you can configure the name and the Xlink's target changeset. To select the target
 changeset:

 	Select the target Plastic SCM server
	Then select a repository inside that server,
	And finally, select a changeset in the repository.

 In this dialog box, you can also set the Writable and Relative
 server options for the Xlink. And also the expansion rules if you
 are creating a writable Xlink.

Updating an Xlink

 The Xlink is created in the workspace and appears as a pending change in the Pending Changes View
 (or cm status --added command), as shown here:

 [image: Just created Xlink in the Pending Changes view]

 Once it is checked in, the Xlink needs to be updated. So, the contents of the mounted directory are downloaded into
 the workspace. This can be done in the GUI by clicking the Update workspace button:

 [image: Xlink in the Workspace Explorer]

Modifying an Xlink using the command line

 The target of an existing Xlink can be modified using the -e modifier of the xlink command.
 In this case, the syntax is similar to the creation syntax. But the Xlink must exist already.

 The following example modifies an existing Xlink component1 to point to changeset 5 on
 repository mylibrary:

cm xlink -e component1 / 5@mylibrary

 Strong: To get further information about modifying an Xlink in the Command Line, refer to the command line interface
 and use the cm help xlink command.

Modifying an Xlink using the GUI

 Xlinks can also be modified by using the Plastic SCM GUI client. When you right-click an existing Xlink, the
 following context menu will pop up:

 [image: Editing an Xlink in the GUI Client]

 When you click the Edit Xlink option, a dialog box will pop up:

 [image: Editing an Xlink Dialog Box]

 You can edit the target changeset of the Xlink. You can also edit the
 expansion rules if you are modifying a writable Xlink.

Exploring the Xlinked repository

 The Plastic SCM GUI views display the information of the top-level repository loaded in the workspace. But, what if
 you want to see the Branch Explorer or the Changesets views of an Xlinked repository?

 The Workspace Explorer makes this easy through the Repository submenu. When you right-click
 an item inside an Xlinked repository, the Repository submenu lets you open the most
 important views for the repository where the item is located: i.e. the Xlinked repository. For your convenience,
 the first entry in the menu contains the repository name of the item:

 [image: Repository menu for an item in an Xlinked repository]

Xlink Expansion Rules

 The Xlink Expansion Rules define how branches are created on the Xlinked repositories and how
 the branches in the parent repository relate to the branches in the Xlinked repository.

Xlink created in top level branch

 The regular scenario is very simple. First, the developer defines a new Xlink from the quake repo to the
 zlib repo. Then, they set the wXlink between changesets on the main branches of each repo.

 [image: Standard Xlink creation]

 The expansion rule for the wXlink at this point will be straightforward:

main@quake -> main@zlib

 Since the two Xlinked changesets are on branches with the same name and the same level (top-level branches in this
 case), expanding the wXlink is very simple, as explained below:

 	
 Now, the developer creates a branch task001 to implement a new feature.

	
 Then, the developer modifies the file /src/foo.c inside the wXlink, so it's stored inside the
 zlib repo.

	
 Because the developer is using a writable Xlink, the branch auto-expansion mechanism of Xlinks
 will create a new branch main/task001@zlib as follows:

 [image: Standard Xlink creation - subbranch]

 At this point, the expansion rules will be as follows:

 [image: Standard Xlink creation - Automatic created rule]

 Note that Plastic has automatically created a new rule
 (Is defined by user = No) to track the new branch expansion that happened.

 New automatically created rules will be created if more branches are automatically expanded through the branch
 hierarchy.

Adding an Xlink on a second level branch

 Consider now the following common example. Suppose you have to create a new wXlink, but you create a task
 branch to do the job. So, you're isolated while you test the new layout, and it will be merged later to the main branch.

 Your scenario will be as follows:

 [image: Xlink creation with proposed rule]

 In this situation, you don't really want to create an Xlink expansion rule from
 main/xlink-creation@quake -> main@zlib, nor use this rule to set how branches are created on the Xlinked
 repo. Most likely, you'll want to eventually Xlink the main branches.

 Plastic SCM will detect this situation and will inform you as follows:

 [image: Warning when creating an xlink]

 And will create a rule main@quake -> main@zlib:

 [image: Main rule creation]

 Now suppose that just after creating the wXlink on the branch task001, you need to modify a file
 inside the wXlink. Since the main to main wXlink is already defined, the branch expansion will
 work correctly and will automatically create a /main/xlink-creation branch inside the
 zlib repo:

 [image: Xlink creation expansion]

 And the expansion rules at this point will be as follows:

 [image: Xlink creation expansion rule]

Creating asymmetric Xlink hierarchies

 So far, the created wXlinks have been symmetric: main linked to main, main/task001 to main/task001, and so on.

 Expansion rules are especially helpful when asymmetric links are required. Suppose you need to link the branch main@quake to branch main/fix@zlib. The initial expansion rule will be set this way, and it will enable a parallel asymmetric evolution as the following picture shows:

[image: Asymmetric links]

 The initial versions of Plastic SCM with Xlink support didn't include Xlink expansion rules. The expansion was controlled by matching branch names, so while simple asymmetric hierarchies were supported, complex cases were not. Consider the following example:

[image: Complex case without expansion rules]

 That will be handled in the following way now:

[image: Complex case with expansion rules]

Advanced expansion cases

 Some projects need to set more than one Xlink to the same repository, maybe because they depend on two different
 versions of the same component.

 Consider the following example:

 [image: Complex case with multiple xlinks in the same repository]

 The erp repo Xlinks twice to the zlib: one for the server code that uses the
 most up-to-date 1.9 version of zlib, and one for the iphone code that uses the older
 version 1.7.

 Note: The erp project could be structured differently, maybe dividing the server and client on
 different repositories, but this is not the goal of this explanation.

 Once the Xlinks are setup, let's inspect /server/zlib:

 [image: Complex xlink in main server]

 Please note how the Is defined by user is set to true. In Plastic
 internals jargon, this rule is a traveling rule which means: it doesn't apply to the current branch and
 has to travel to the final one (like when you create a rule in /main/task001 for
 main@quake ->
 main@xlinked
 , it has to travel to main during the merge) or it hasn't been applied yet.
 Consider now the situation where you make a change inside /server/zlib. The situation will be:

 [image: Complex case with multiple xlinks in the same repository - Change]

 Where the /server/zlib wXlink has been updated to point to the newly expanded branch
 main/server@zlib while the other wXlink hasn't been modified yet.

 At this point, if you edit the wXlink /server/zlib, you'll see the rule has been modified, and it is
 now as follows:

 [image: Complex xlink in main server after expansion]

 The rule now applies to the branch association, so it is no longer considered as a traveling rule
 (or defined by the user).

 Xlink Branch Expansion in action in a complex scenario

 This is a complex scenario, and understanding how it works helps to understand Xlink branch
 expansion rules.

 Initially, an Xlink is created from main@erp to main@zlib with a rule
 main -> main/server (main/server branch is still empty):

 [image: Xlink Branch Expansion in action in a complex scenario - step one]

 Then the developer creates main/task001@erp and makes a change inside wXlink.

 Please note how the branch expansion doesn't happen as initially expected only because main/server is
 empty and it doesn't contain changesets to start /main/server/task001 from, so
 main/task001@zlib is created instead:

 [image: Xlink Branch Expansion in action in a complex scenario - step two]

 The developer merges main/task001@erp back to main, and the following happens
 (now the rule is used as expected). The rule defined by the user is finally used when the correct conditions are met:

 [image: Xlink Branch Expansion in action in a complex scenario - step three]

Merging links

 Merging a branch also affects the auto-expanded branches in the wXlinked repositories. The merge operation is done on the top-level repository (the repository to which the workspace is pointing). It will then evaluate any new versions of wXlinks that have been created and consider the changes in the linked repositories in the merge process.

 In this sample scenario, we have the same 2 repositories used in previous sections: ProjectX and MyLibrary. ProjectX is the top-level repository and contains a wXlink component1 pointing to MyLibrary. In ProjectX, we have created two child branches: task0127 and task0243.

 We then made changes in the file events.h, located in the Xlinked MyLibrary repository in both branches. This, indeed, expanded branches task0127 and task0243 to the MyLibrary repository:

[image: Sample conflict: same file modified on two branches on Xlinked repositories]

 Now, what happens when you merge from branch task0127 to branch task0243, as depicted in the figure below?

[image: Branch task0127 is merged to task0243]

 The merge operation will consider the changes made to the wXlink in both branches and then evaluate the changes in the wXlinked repositories themselves to include them in the merge. So, as a user, you'll have to resolve any possible conflicts as you would with a normal "single repository" merge.

[image: Merging changes in Xlinked repositories]

 Now the merging of Form1.cs is resolved but, what about the wXlink? The answer is that the merge operation will also update the WXlink to point to the result of the merge in the MyLibrary repository. That is, as a result of the merge operation, there is a new version of Form1.cs with the merged changes, and the WXlink in the ProjectX repository will point to this new changeset. For this reason, the Pending Changes view shows a pending merge link for the ProjectX repository, as depicted in the next figure:

[image: Merged branches in top-level and wXlinked repositories]

 The overall result is that you only need to tell Plastic SCM "I want to merge this branch" in your workspace, and the merge operation will handle the changes made in wXlinked repositories.

Relative Xlinks

 When Xlinks are replicated, the target they point to is still the original one. So, say that you are replicating a repository with an xlink component1 pointing to changeset number 6 on repository MyLibrary on server mainserver.location1.com:8087. The destination of your replica is on another Plastic SCM server at otherserver.location2.com:8087. When you replicate the top-level repository, the Xlink in your replicated repository will still point to mainserver. If it is reachable from the location2.com network, the data for MyLibrary repository will be downloaded from location1.com.

 Most of the time, you'll want to replicate the MyLibrary repository to location2.com as well and perform any changes in the local replica.

 To tell the Xlink that you want to use the MyLibrary repository found in your default server (that of the top-level repository), you need to create the Xlink with a relative server.

 This is achieved with the -rs modifier when the Xlink is created, as in the following example:

cm xlink -rs component1 / 6@mylibrary

 When this link is replicated, it'll try to locate MyLibrary repository in the local server rather than mainserver.location1.com.

 Changeset number 6 may no longer have number 6 in the replicated repository (changesets are internally identified by their GUID, not their number) since replicas may have different numbering.

 The Xlink will be pointing to the right changeset even if the number changes because it uses the changeset GUID rather than the changeset number to locate it.

 Read the Plastic SCM book to learn how replication works.

Updates

 January 21, 2019

 	We updated the screenshots related to the Xlink dialogs to show how they look like now.
	
 We also included some notes to remark that you can only manage expansion rules when you are creating or
 editing writable links.

 April 10, 2019

 	Specify that we only support partial Xlinks pointing to directory paths.

December 17, 2016

 	Partial read-only Xlinks are now available.

